Bounding Component Behavior via Protocols

Frantisek Plasil"*, Stanislav Visnovsky', Miloslav Besta'*

'Charles University, Prague “Academy of Sciences of the Czech Rep.
Department of Software Engineering Institute of Computer Science
{plasil,visnovsky, bestal(@nenya.ms.mff.cuni.cz {plasil, besta}(@uivt.cas.cz
http://nenya.ms.mff.cuni.cz http://www.uivt.cas.cz
Abstract

In this paper, we enhance the SOFA Component Description Language with a semantic
description of a component's functionality. There are two key requirements this description aims
to address: first, it should ensure correct composition of the nested architectural abstractions (for
design purposes); second, it should be easy-to-read so that an average user can identify a
component with the correct semantics for the purposes of component trading. The semantic
description in SOFA expresses the behavior of the component in terms of behavior protocols using
a notation similar to regular expressions which is easy to read and comprehend. The behavior
protocols are used on three levels: interface, frame, and architecture. The key achievements of this
paper include the definition of the protocol conformance relation. Using this relation, the designer
can in most cases statically verify that the frame protocol adheres to the requirements of the
interface protocols, and that the architecture protocol adheres to the requirements of the frame
and interface protocols.

1. Introduction

It is widely accepted that in the very near future, the majority of software applications will be
composed from reusable, potentially off-the-shelf software components. One of the cornerstones of
successful component trading and usage is the possibility to describe their functionality in terms of
both internal and external communication taking place through the component interfaces. Such a
description should be sufficiently precise in order to allow for automatic checking of correctness of
component composition and use, but easy to comprehend for application programmers and simple
to write for component designers. From this perspective, one of the current concerns with
components is that the usual signature-based interface definitions do not describe the component
communication precisely enough. The need for such a definition is reflected in efforts of the object-
oriented programming community, e.g., in [2, 10, 14, 15].

1.1. Objects and protocols

An object interface definition can be considered as a service definition. As stated in [9], the
sequences of requests that an object is capable of servicing constitute the object's profocol, a
specification of which should be an integral part of the object’s interface definition(s). A typical way
[2,4,9, 10, 17, 14] to express the object's protocol is to model it as a finite state machine. There are
three basic approaches to specify such a machine: (1) directly as a state transition system, ¢.g. [9,

14, 17], (2) via a parser accepting the valid request sequences, ¢.g. [4], (3) as a regular-like
expression generating the valid request sequences, ¢.g. [2, 12]. The protocols originate in path
expressions | 3] which specify synchronization of procedures executed in parallel. Procol [2] might
serve as an example of an object language in which protocols are used to describe both the access
synchronization and the availability of an object’s service.

In all these synchronization schemes, checking the compliance of calls to an object with its
protocol was expected to be done at run-time. As emphasized in [10], rather than simply raising
exceptions when protocols are violated, it would be desirable to statically validate clients’
conformance with protocols and to determine automatically if a protocol can be formally viewed as
a “subtype” of another one. In a similar vein, a subtyping relationship on regular types is defined
in [9] which allows to statically determine whether a protocol can be replaced by another one.

1.2. Components and protocols

Recently, the component-oriented program design has drawn a lot of attention, mainly because
components provide a higher level of design abstractions than objects. Usually, a component can be
viewed as a black-box entity which provides and/or requires a set of services (accessed through
interfaces). Components can be composed together by binding required to provided services, forming
a framework resp. a higher-level component.

With respect to describing component communication, the approaches based on applying the idea
of object protocols to components include [1] and [17]. In [1], the protocol is expressed via a set of
recursive CSP-based equations. The protocol idea outlined in [17] is based on cooperating pairs of
typed interfaces (collaborations). A collaboration description includes the protocol described as a
set of sequencing constraints based on a transition system.

1.3. Challenges, the goal of the paper

None of the approaches mentioned in Section 1.2 are based on describing protocol in a form
similar to regular expressions which is very easy to read. Moreover, none of these approaches
address a step-by-step development of a component's protocol during the design process of the
component. Thus, the goal of this paper is to address these two issues: protocol readability and
support for step-by-step protocol refinement.

To reflect the goal, the paper is organized as follows. In Section 2, we provide an overview of the
SOFA component model which will serve as a proof-of-the-concept base. Section 3 introduces
behavior protocols and the underlying model of communication. The key contribution of the paper
is provided in Section 4, which shows how behavior protocols can be associated with the SOFA
architecture description language (CDL), and in Section 5, where the protocol conformance relation
is defined. Moreover, these sections outline seamless fitting of the idea of step-by-step protocol
refinement into the SOFA component model, where refinement-based component design is supported
by providing both black-box view and grey-box view on a component as a part of the component's
type definition. Section 6 is devoted to evaluation and open issues. Related work is discussed in
Section 7. Section 8 concludes the paper by summarizing key achievements.

2. SOFA Components
2.1. Component model
The SOFA (Software Appliances) project [11] targets the issue of composing applications from

components which can be deployed over a network. In the SOFA component model, an application
is viewed as a hierarchy of nested software components. Analogous with the classical concept of an

object being an instance of a class, we introduce a sofiware component (component for short) as an
instance of a component template (template for short). In principle, “template” can be interpreted
as “component type”.

A template is a pair <template frame, template architecture>. The femplate frame (frame for
short) of a template T defines the set of individual interfaces any component which is an instance
of T will possess. Basically, the frame of T reflects a black-box view of T. Interfaces are defined
in the SOFA CDL language. In a template frame, similarly to many other architecture description
languages (ADLs), an interface (type) can be instantiated as a provides-interface or a requires-
interface.

The tfemplate architecture (architecture for short) describes the structure of a concrete version
of the corresponding template frame implementation by instantiating direct subcomponents (those
on the adjacent level of component nesting) and by specifying the necessary component
interconnections via interface ties. There are three kinds of interface ties: (1) binding of a requires-
interface to a provides-interface, (2) delegating from a provides-interface to a nested component’s
provides-interface, (3) subsuming of a subcomponent’s requires-interface to a requires-interface.
Basically, the architecture of T reflects a grey-box view on T. The architecture can be specified as
primitive which means that there are no subcomponents and the template frame implementation will
be given in an underlying implementation language, out of the scope of the architecture specification.
When an architecture is not primitive, the nested components are viewed on the level of their frames.

2.2. CDL specification language

The specification of a SOFA component is written in the SOFA component definition language
(CDL), which is based on CORBA IDL. The complete syntax of CDL is given in [7]. Here, we just
demonstrate CDL on a simple example.

Let us imagine we need to create a component which will serve as a very simple database server
(Figure 1). Such a component should provide the Insert, Delete, and Query operations for inserting
and removing records from the database, and querying the contents of the database. The database
server will access the underlying database via the IDatabaseAccess interface type and will use the
ILogging interface to log invocations of the provided operations. For this purpose, CDL includes
the interface construct which specifies the interface type as a set of method signatures. Our interfaces
can be specified as follows:

interface IDBServer {

void Insert(in string key, in string data); interface IDatabaseAccess {

void Delete(in string key); void Open();

void Query(in string query, out string data); void Insert(in string key, in string data);
A void Delete(in string key);

void Query(in string query, out string

interface ILogging { data);

void LogFEvent(in string event); void Close();

void ClearLog(); A
}’.

The frame specification contains declarations of provides-interfaces and/or requires-interfaces.
Thus, the Database frame, representing the intended simple database server, is specified by the
following frame construct:

frame Database {
provides:
[DBServer dbSrv;
requires:
[DatabaseAccess dbAcc;
ILogging dblLog;
}’.

architecture Database version v2 {
inst TransactionManager Transm;
inst DatabaseBody Local;
bind Local:tr to Transm:trans;
subsume Local:lg to dbLog;
subsume Local:da to dbAcc;
delegate dbSrv to Local:d;

S Figure 1. Database architecture

Several versions of the Dafabase architecture can be specified. A possibility is to declare a
version as primitive, 1.€., with no nested components. As an alternative, the Database architecture
version v2 illustrates how the subcomponents are instantiated and how their ties are specified
(distinguishing bind, subsume, and delegate ties). Notice that the subcomponents are specified only
at the abstraction level of their frames. As this approach clearly separates the levels of providing
architectural details, it allows, ¢.g., for easy replacement of a subcomponent by its new version.

3. Behavior protocols

3.1. Model of communication

In this section, we describe the essence of the communication model described in detail in [13].
In this model, an agent is a computational entity handling sequences of events. As to handling events,
agents can emit events, absorb events, and perform internal events. In general, we say that an agent
exhibits some actions. Agents communicate via peer-to-peer connections. In principle, an agent can
communicate with a finite number of agents, and two agents can communicate by means of a finite
number of connections. Moreover, we assume that an agent cannot handle more than one event at
a time, there is no connection delay, and an agent can emit an event only if its counterpart is
prepared to accept it. We pretend that emitting and absorbing a particular event is done as one
atomic action.

By activity of an agent A on a set of connections CS we understand the sequence of actions A
exhibits on CS. By convention, this sequence is represented by the frace of A on CS. In general, a
trace is a sequence of action fokens, each of them representing exactly one action. In an action token,
the event name is followed by the symbol 7 resp. / which distinguishes request resp. response. To
express whether an event is emitted, absorbed, resp. is internal, we prefix the event name by the /,
7 resp. T symbol. There is a local event namespace associated with every connection. In order to
distinguish among actions exhibited on different connections of the same agent, each event name can
be qualified by a connection name. In an application, a single global namespace of connection names
also exists.

An agent can be primitive or composed. A composed agent P is constructed by a composition of
two agents A and B. The connections of P are the union of the connections of A and B. The
connections through which A and B communicate with each other (external connections from A’s
and B’s points of view) become infernal connections of P; events on the internal connections of P

are referred to as infernal events of P (analogous with internal actions T in [8]). Let C be a
connection of A. By definition, P shares C with A. The events on C are handled by both P and A
jointly (in the sense that the event handling done by A is also considered to be done by P). If C is
external both in A and P, the contribution to the corresponding traces of A and P is the same.
(Similarly in the case of C being internal in both A and P). However, if C is external in A but
internal in P, the handled events are prefixed by T in the trace of P and by ? or ! in the trace of A.

On a set of connections CS, the set of all possible activities of the agent A is the behavior of A
on CS. By convention, the behavior of A on CS is represented as a set of traces — the language of
A on CS (denoted by L, 5). The event restriction of a language L on a set of event names N is a
function @ L = L, such that oy (ox,0,X,0,...X,0,) = X;X,...X,,, Where o, 0,X,0,...X,0, € L, x; €
Ey. o; € (B \ E)*, Ey is the set of all possible action tokens the event names of which are in N, and
E; is the set of all action tokens in L. In other words, the restriction is a function which from every
trace of the language L omits all action tokens whose event names are not in N. The resulting set of
words constitutes the language L. Furthermore, the restriction of language L, -5 on a subset C of
the connection set CS is the language L, ¢s/C = @cp(L4 cs), where CE is the set of all action tokens,
event names of which are qualified by the identification of a connection from C.

The key issue is to find a formal notation able to specify the typically infinite language L, .5 in
a finite way. Such a notation should be simple enough to be easily included in an ADL language. The
approach we choose is to take advantage of the fact that some of the languages can be expressed by
behavior protocols (Section 3.2). At the same time, a language L which cannot be precisely defined
by a behavior protocol can usually be approximated by a “closely relative” language L.’ reflecting
well the abstraction level difference between an ADL specification and an implementation in a
programming language.

3.2. Behavior protocols

A behavior protocol (protocol for short) is a regular-like expression, which (syntactically)
generates traces. The basic element of a behavior protocol is an action token or NULL (for empty
protocol). A protocol can use the following operators and abbreviations, where a, B denote protocols
and m denotes an event name.

Operators Abbreviations

o’ reentrancy; equivalentto o | a | ... | a m{a} nested incoming call;
o* repetition; equivalentto o ; o ;... stands for 'm1 ; o ; Im!
o|B and-parallel; an arbitrary interleaving of traces

generated by o and B m simple incoming call;
o| P or-parallel; stands fora+ B+ a | stands for 7m! ; 'm1
o ;B sequencing; concatenation of traces generated 'm simple outgoing call;

by o and stands for 'm1 ; ?7m!

a + B alternative; either o or B

arf composition; similar to o | f except for when m
is absorbed in a trace generated by o and
emitted in a trace of P then the simultancous
participation is expressed as internal event

Intuitively, a behavior protocol can serve for expressing action ordering. For example, if we want
to express that an agent emits a request # first, then it absorbs any number of requests x, y, or z, and
finally a response v is emitted, we can describe this behavior by means of a protocol in the form
t; (2x7+2y7+2z7)%; v/,

4. Associating behavior protocols and SOFA components
4.1. Agents: components at run time

Modeling of SOFA components via agents is straightforward: Every component can be associated
with an agent (one-to-one relationship) such that it models the component behavior. Given a
component C, we call the agent associated with C the agent of C, or simply the C agent. In any
component C being an instance of T=<F, A>, if A is primitive, the C agent is primitive. Otherwise,
the C agent is the composition of the agents of all subcomponents of C (recursively).

Distinguishing the two kinds of
interfaces (provides and requires) can
be reflected as employing connections
with a “provides” and a “requires” end
in the sense that the emitting and
absorbing of ecvents follows this
pattern: A method call m(...) issued by
the component C on a requires-
interface is modeled as the event pair
!CON.mT...?CON.m! ...inatrace of
the C agent and ..?CON.mT... .

. . Subsume | Bind | Delegate
'CON.m! ... in the corresponding trace > < ><
of the C agent (CON identifies the
connection). A call of a one-way
method ow(...) is modeled as an event Figure 2. Binding of components
'ow! in a trace of the C agent and
?ow! in the corresponding trace of the C” agent. In principle, the set of method names in the
interface types involved comprises the event namespaces.

A component C which is an instance of T=<F, A> is basically specified by a set of frame
instances involved in the description of A (recursively). To follow the basic philosophy of nesting
in CDL specifications, a connection is specified on an incremental description basis. This
incremental approach is embodied by tying pairs of interfaces as presented in Section 2. Thus, a
connection specification can be seen as a chain of subsume, bind, and delegate clauses spanning
across the corresponding hierarchy of architecture specifications, €.g., as depicted on Figure 2. Here,
A, B, C, D, X, Y are the component names, IA, IB, IC, IX, IY are the names of the interface
instances tied together. Thus, with respect to the composition of agents, the agents of A, B, and C
share the “requires” end of the connection and the agents of X, Y share the “provides™ end. The
connection is internal to the D agent. Technically, the connection is uniquely identified by its fi/l-
chain identification, taking the form: D.C.B.A:IA-D.C.B:IB-D.C:IC =D . X:IX-D.X.Y:1Y.

4.2. Bounding behavior of components

As emphasized in Section 3.1, an agent’s behavior can be approximated by a behavior protocol.
Thus, we could employ the behavior protocols to approximate component behavior. The key issue
is to define the exact meaning of the “approximation” of the SOFA component behavior. Qur answer
to this question is based on the idea that a component’s behavior on its provides-interfaces can be
“richer” than what is specified by a protocol, while the behavior on its requires-interfaces has to be
“narrower” than what is specified by a protocol. Such an approximation is referred to as “bounding™
the behavior of a component; formally:

Let C be a component and P resp. R the sets of all C’s provides-interfaces resp. requires-
interfaces (recursively including the interfaces of C’s subcomponents). We say that the behavior
represented as language L of the component C on a set of its interfaces SI is bounded by a protocol
BP if both of the following inclusions hold:

(1) L(BP)/(P. N SI) € Lo/(Pe N SI) (2) L(BP)/(Ren SI) 5 Lo/(Re N SI)

Needless to say, a key issue of employing the behavior protocol idea in the component design is
to find meaningful sets SI and natural units for which protocols can be easily formed. Obviously,
the CDL interface, frame, and architecture concepts are such natural units. We therefore introduce
the interface, frame, and architecture protocols in Sections 4.3 — 4.5.

The CDL constructs, however, are inherently generic — at the CDL specification level, the
protocols can only contain a generic identification of potential connections. Consequently, the
protocols in CDL are specified in a generic form. In particular, the generic connection names are
derived from the interface instance identifications as declared in the corresponding CDL frame and
architecture constructs.

Because of the step-by-step refinement nature of the component design, the knowledge of the
connection identification is also obtained on a step-by-step basis, reflecting the nesting of
architectures. Each level of a template T’s nesting into another template contributes incrementally
to the knowledge of a part of the complete-chain identification of the connections which are involved
in T. This implies a step-by-step modification of every protocol P associated with T; we call these
intermediate forms of P semi-instances of P. After the outmost component is instantiated, each
protocol in the component contains a complete-chain identification of the connections; the semi-
instance of P becomes an instance of P. It should be emphasized that only an instance of a protocol
can bound the behavior of a component. Anyway, bounding the behavior is a run-time issue.

4.3. Interface protocol

To capture the behavior of a service specified by a particular interface type, we enhance the
interface type specification by an inferface protocol. In principle, in an interface protocol associated
with a provides (resp. requires) interface, a method invocation is to be prefixed by ? resp. !. In CDL,
the interface protocol is written in its generic form, i.¢., no ? and ! prefixes are used; the prefixes are
automatically added when the corresponding interface type is instantiated.

To illustrate the use of interface protocols, let us consider a protocol for the IDatabaseAccess
interface from Section 2.2. The intended use of this interface is to call the method Oper first, then
do a modification of the database by invocations of /nsert, Delete and Query, and finally to finish
the work with the database by invoking Close. The corresponding protocol is Open ; (Insert +
Delete + Query)* ; Close. If the Insert, Delete, and Query methods were to be designed to handle
requests in parallel, we could specify this intention by Open ; (Insert || Delete || Query)* ; Close.
This indicates that parallel execution of the Insert, Delete, and Query methods is possible, but any
two invocations of Insert must be done sequentially (the same holds for Delete and Query). To
specify that a completely parallel invocation of these methods is allowed, the reentrancy () operator
is to be used instead of the repetition (*), vielding Open ; (Insert || Delete || Query)”™ ; Close.

4.4. Frame protocol

To allow the specification of a “black-box behavior” of a component, we enhance the frame
specification by including a frame protocol. Here, the protocol specifies the acceptable order of
method invocations on the provides-interfaces and the expected reactions on the requires-interfaces
ofthe frame. Thus, a name of an action is qualified by the name of the interface instance the invoked
method belongs to, and is prefixed by ? or !. Method calls can be specified as nested. This semantics
can be expressed by curly brackets (Section 3.2).

For illustration, we present the frame protocols of Database and DatabaseBodly:

// Database frame protocol frame DatabaseBody {
provides: IDBServer d;

ldbAce.Open ; requires: [DatabaseAccess da;
(?2dbSrv.insert { (/dbAcc.Insert ; ILogging Ig;
!dbLog.LogEvent)* } + ITransaction tr;
?2dbSrvDelete { (/dbAcc.Delete ; protocol:
!dbLog.LogEvent)* } + !da.Open ;
2dbSrvQuery { IdbAcc.Query* } (?dlInsert {! tr.Begin ; /da.Insert ;
)*; Ng LogEvent ; (Itr.Commit + /tr.Abort) } +
ldbAcc.Close ?d.Delete {! tr.Begin ; /da.Delete ;

lg. LogEvent ; (Itr.Commit + Itr.Abort) } +
2d.Query { !da.Query }
)*;
/da.Close

In the Database frame protocol, the fact that each modification of the database should be logged
is reflected by specifying nested calls in the following way: inside every dbSrv. Insert invocation, any
number of dbAcc.Insert calls can be executed, and after cach of these calls is finished, the
modification is logged by invoking dblog LogEvent. Similarly, as a part of every dbSrv. Delete
invocation, deleting is logged by dblog LogEvent. The specification of the DatabaseBody frame
illustrates the CDL syntax of employing frame protocol in a frame specification.

4.5, Architecture protocol

For a template T=<F, A>, an architecture protocol specifies a “grey-box” behavior of T’s
instances. In principle, the architecture protocol is based upon the frames of the direct
subcomponents specified in A. The protocol describes the dependencies among the interfaces of F
and the outmost interfaces of all subcomponents in A. In CDL, the architecture protocol is not
specified directly. Our approach is to generate it, ¢.g., in a CDL compiler, by combining the semi-
instances of the internal frame protocols using the composition operator (). This eliminates the need
for what would, in fact, be a manual rewriting and mechanical modification of protocols when
creating the semi-instances. However, this approach does not capture special properties of the
architecture, ¢.g., simple dependencies among internal subcomponents.

To illustrate what a generated architecture protocol looks like, let us consider the Database
architecture version v2 which contains two subcomponents: 7ransm (instance of
TransactionManager) and Local (instance of DatabaseBody). When the frame protocols are
modified into the corresponding semi-instances and the composition operator is applied, we obtain
the following architecture protocol of Database:

(?<Localtr - Transm:trans>.Begin ;
(?<Local:tr— Transm:trans>.Commit + ?<Local:tr » Transm:trans>.Abort)
)*

7
/<l ocal:da-dbAcc>.Open ;
(?<dbSrv-Local:d>.Insert {
I<local:tr - Transm:trans>.Begin ; !<Local:da-dbAcc>.Insert ; I<Local:lg-dbLog>.LogEvent ;
(I<Local:tr - Transm:trans>.Commit + !<Local:tr - Transm:trans>.Abort)
}+
?<dbSrv-Local:d>.Delete {
I<localtr - Transm:trans>.Begin ; !<Local:da-dbAcc>.Delete ; <Local:lg-dbLog>.LogEvent ;
(I<Local:tr - Transm:trans>.Commit + !<Local:tr - Transm:trans>.Abort)
}+
?<dbSrv-Local:d>. Query { !<Local:da-dbAcc>.Query }

* .

!<Loca/:da—dbAcc>. Close

5. Protocol conformance
5.1. Definition of protocol conformance

The generic protocols specified in a template T=<F, A> constitute an obligation on the part of all
potential implementations of T. The protocols of the components tied together within the template
have to correspond to each other, i.¢., intuitively, the architecture protocol of A should follow the
design intentions embodied in the frame protocol of F and the interface protocols of the interfaces
in F and A should comply with the way these interfaces are employed in the protocols of F and A.
The definition of protocol conformance reflects this intuition:

Definition: Let T=<F, A> be a template with frame protocol Py and architecture protocol P, and
I, I, be two interfaces with interface protocols Pr, and Pr,. We say that inferface protocol P,
conforms to interface protocol Pr, iff L(Pr) < L(Pr). We say the frame protocol of ¥ conforms to
the interface protocols of interfaces of F iff, for every provides-interface P in F with an interface
protocol Py, L(P;p") ¢ L(P)/{P} holds, and for every requires-interface R in F with an interface
protocol Py, L(Pp)/{R}cL(Py’) holds, where P, (resp. Pr’) denotes the semi-instance of Py (resp.
Py) with respect to F. We say that architecture protocol P, conforms to frame protocol Py iff
L(Py")/Sspr € L(PL)/Sepr and L(P,)/Rgpr € L(Pr")/Rgpr, where Sggy is the set of all F’s provides-
interfaces and Rgg; is the set of all F’s requires-interfaces and Py’ denotes the semi-instance of Py
with respect to A.

Claim: Let T=<F, A> be a template with frame protocol Py and architecture protocol P,, {S;}
the set of all F’s provides-interfaces, and {R;} the set of all F’s requires-interfaces. If Ps, is the
interface protocol of S; and Pr is the interface protocol of R;, then L(Ps,”) = L(P")/{S;} = L(P,)/{S;}
for all provides-interfaces S; in F and L(Pr") o L(Pz")/{R;} = L(P,)/{R;} for all requires-interfaces
R; in F, where Ps’ resp. Pr’ denotes the semi-instance of Ps, resp. Pr, with respect to A and Py’
denotes the semi-instance of Py with respect to A.

The definition of protocol conformance ensures that, having a component C as an instance of
template T=<F, A>, the architecture, frame, and interface protocols form a hierarchy. The
architecture protocol restricted to the frame’s interfaces has to conform to the frame protocol and
the frame protocol restricted to any frame’s interface has to conform to the interface protocol of that
interface.

As an example, consider the conformance of the architecture protocol Database version v2 to the
corresponding frame protocol. Following the definition above, we have to identify the restrictions
and then verify the inclusions. For the requires-interfaces (dbLog and dbAcc), the restrictions for the
frame protocol and for the architecture protocol are shown below. As we can see, the architecture
protocol of its requires-interfaces is narrower than the frame protocol. Similarly, the same
verification has to be done for the provides-interfaces. For illustration, the restriction here is done
on protocols instead of the generated languages. This is not always possible, however, in the cases
when we are able to automatize inclusion checking, restriction on languages can be done in an
automatized way (Section 5.2).

//Database frame protocol restriction //Database architecture protocol restriction
IdbAcc.Open ; IdbAcc.Open ;
((!dbAcc.insert ; IdblLog.LogEvent)* + ((!dbAcc.Insert ; IdblLog.LogEvent) +
(/dbAcc.Delete ; IdbLog.LogEvent)* + (!dbAcc.Delete ; dbLog.LogEvent) +
ldbAcc.Query™* ldbAcc.Query™*
)*].)*].

5.2. Checking of protocol conformance

The most important problem of design-time protocol conformance checking is the complexity of
languages generated by behavior protocols (BPLs). The sequence, repetition, and alternative
operators define regular languages. Based on the definition of the | and m operators, each use of these
operators in a protocol can be replaced by a finite expression containing only +, ;, and *. Therefore,
the languages generated by behavior protocols with no use of the ~ operator are regular and
verification of their inclusion as well as a construction of the language restriction based on
intersection can be done in an algorithmic way [6]. But the ” operator damages regularity of BPLs.
Even worse, BPLs are not context-free in general case. It can be easily shown that (a;b;c)” violates
the pumping lemma for context-free languages. The identification of the subclass of behavior
protocols for which the inclusion verification is possible, €.g., protocols where the reentrant
subprotocols are equivalent, is a hot topic in our current research. Also, we are evaluating the
justification of employment of the ~ operator.

At run-time, on the contrary, it is always possible to check if the behavior of a given component
is bounded by a behavior protocol (no restrictions in terms of ~ as actual number of reentrant
“entries” into the protocol is known) The run-time checking is typically based on intercepting the
method calls by a “protocol guard”. It can also be used for run-time checking of protocol
conformance, but this approach is not very useful as the run-time checks cannot prove the
conformance, they can only identify any non-conformance encountered.

6. Evaluation and open issues

The main advantage of the behavior protocols is their intuitively easy-to-comprehend notation for
description of communication. Behavior protocols are not designed to be used as a full programming
language. For example, they cannot specify any specific number of repetitions, reentrant entries, etc.
They only approximate real traces. Balancing the expressive power and the simplicity of protocols,
we believe that the argument of an elegant and easy-to-read notation can outweigh some loss in
expressiveness and justify application of behavior protocols in ADLs.

Interface protocols are guidelines for using interfaces. They help to distinguish among different
types of services which have the same interface signatures. Moreover, they provide information for
component trading and enhance opportunities for checking of component design correctness. The
idea of frames with frame protocols helps system designers to build a system from components
without detailed knowledge of the components” internals. The frame protocol publishes information
about communication among interfaces implemented by a component and thus gives advice to
implementors about the component implementation. The frame protocols also provide means for
reasoning about suitability of components for a specific purpose. Finally, the notion of architecture
protocol improves the description of component behavior by revealing behavior at the next level of
component nesting. Architecture protocols are not specified explicitly in CDL, but they are rather
created by a tool which combines the frame protocols of nested components by means of .

The fact that the interface, frame, and architecture protocols form a hierarchy implies the
possibility of checking compatibility of protocols at different levels of abstraction. To formalize the
requirements of such a compatibility, we introduce the protocol conformance relation. There is a tool
which can statically decide (in most cases) whether two protocols at different levels of abstraction
comply. This allows for reasoning about template design and supports process of design refinement
which we consider to be the key contribution of this paper.

The list of open issues includes: (1) Although the tool for checking protocol conformance has been
implemented, some problems with the reentrant operator persist. The issue is to better define the
conditions under which the reentrant operator can be used in order to preserve the possibility of
checking the protocol conformance in an algorithmic way. (2) We consider to use guards for
constraining method invocations in protocols. Guards could help to better understand a component’s

semantics, but it is not clear if the guard predicates should rely on the component methods for their
evaluation, or if some abstract properties representing the internal state of the component should be
defined. (3) We do not consider the issue of protocol inheritance. At present, we face the challenge
to enhance the sound enrichment technique [12] to reflect protocol conformance. (4) Versioning of
architectures is considered in SOFA. Compatible architectures could be rated by comparing their
architecture protocols. (5) The SOFA components can be updated at run-time. An update can take
a place only when a component is in a precisely defined state. The issue is to express “points of
updating” in the frame or architecture protocols. (6) The conformance relation between the
architecture and frame protocols, as defined in this paper, is based on separate inclusions of the
provides and requires restrictions. This way, however, the interplay among the provides and requires
interfaces within a frame can be lost. The issue is to find a better definition of compliance of a frame
and architecture protocols overcoming the problem.

7. Related work

Probably the closest to our work is the Wright language [1]. In Wright, the behavior of
components is specified as “computation” via a CSP-based notation (a system of recursive
equations). In our opinion, regular-like expressions are more readable while having an expressive
power strong enough to reasonably approximate the behavior of components. Components in Wright
communicate by means of connectors which can be quite complex. Their behavior specification
(“glue™) is also CSP-based; in fact, glue is very similar to computation. In SOFA, we can simulate
connectors by specialized components. In Wright, there is no black-box view of a component which
contains subcomponents. In our approach, frames with frame protocols are introduced for this
purpose, which we consider very important for refinement-based design of components and for
component updating.

The work on interfaces and protocols [17] is quite similar to our approach in the sense that it
describes communication between component interfaces. It, however, concentrates only on a
behavior description related to a single pair of collaborating interfaces. The specification of a
component as whole is not considered, and therefore no concepts similar to our frame and
architecture protocols are present. Consequently, the protocol description in [17] can hardly be used
for reasoning about component composition, replacement, etc. On the other hand, we found it
interesting that the description allows for bidirectional communication on a single pair of interfaces;
while not supported directly in SOFA, this can be easily modeled by our communication model. In
our opinion, the way we have chosen for expressing component behavior is easier to apply. Similar
approach is chosen in ROOM [14] where the communication is not limited to a pair of interfaces.
Also, a protocol conformance (called role substitutability) is briefly outlined here.

Reuse contracts [15] introduce the idea of specifying the set of internally invoked methods for
cach method of an interface, thus capturing the invocation dependencies among methods. However,
the model presented in this work is limited in the sense that since it provides description only at the
object level of abstraction, it does not support the component-based approach with more cooperating
interfaces. While we can describe ordering of nested method invocations, reuse contracts do not aim
at expressing such information.

8. Summary

This paper introduces a novel technique for specification and bounding of component behavior
via behavior protocols which take a form similar to regular expressions. The description of a
component behavior by means of behavior protocols is precise enough to capture the necessary
requirements in terms of describing the method calls ordering requirements. It is easy to read, and,
at the same time, simple to create because the notation is easy to comprehend. Thus, the protocols
meet the basic requirements for a practically useful specification. The paper presents a way of their
deployment in the SOFA CDL language.

In SOFA, the three abstraction levels of protocol employment (i.e. interface, frame, and
architecture) significantly support the refinement design process, allowing to reason about
component behavior on different levels of information hiding. Without unduly exposing any details
of the component structure, the interface protocol enhances the description of the service provided
or required on an interface. The frame protocol hides the architecture details; it provides behavior
information important for component design and trading and, furthermore, supports seamless
component updating. The architecture protocol describes component architecture in more detail in
order to provide guidelines for design and implementation purposes.

Interface, frame, and architecture protocols are tied together by the protocol conformance
relationship which incorporates the idea of behavior compatibility. The verification of protocol
conformance can be done statically, i.e. at design time, in many cases, allowing for reliable
composition of applications. Moreover, in an implementation of a component type, it is also possible
(by intercepting method invocations) to check compliance of the real component behavior with the
component specification at run-time.

Acknowledgments

The authors of this paper would like to express their special thanks to Petr Tuma for his useful
comments. The authors” appreciation goes also to their colleagues Marek Prochazka for drawing
their attention to the nested calls problem and Dusan Balek for comments on the communication
model. This work was partially supported by the Grant Agency of the Academy of Sciences of the
Czech Republic (project number A2030902), the Grant Agency of the Czech Republic (project
number 201/99/0244), and MLC Systeme, Ratingen, Germany.

References

[1] Allen, R. J.: A Formal Approach to Software Architecture, Ph.D. Thesis, School of Computer Science, Carnegie
Mellon University, Pittsburgh, 1997.

[2] van den Bos, J., Laffra, C.: PROCOL: A Concurrent Object-Oriented Language with Protocols Delegation and
Constraints, In Acta Informatica, Springer-Verlag, 1991, pp. 511-538.

[3] Campbell, R. H., Habermann, A. N.: The Specification of Process Synchronization by Path Expressions, Springer
LNCS, Vol. 16, 1974, pp. 89-102.

[4] Florijn, G: Object Protocols as Functional Parsers, In Proceedings of the ECOOP <95, Springer LNCS 952, August
1995, pp. 351-373.

[5] Hoare, C. A. R.: Communicating Sequential Processes, Prentice-Hall, 1985.

[6] van Leeuwen, J.(ed): Formal Models and Semantics, Handbook of Theoretical CS, MIT Press, 1990.

[7] Mencl, V.: Component Definition Language, Master Thesis, Charles University, Prague, 1998.

[8] Milner, R.: A Calculus of Communicating Systems, Springer LNCS 92, 1980.

[9] Nierstrasz, O.: Regular Types for Active Objects, In Proceedings of the OOPSLA 93, ACM Press, 1993, pp.

1-15.

[10] Nierstrasz, O, Meijler, T. D.: Requirements for a Composition Language, In Proceedings of the ECOOP 94,
Springer Verlag, LNCS 924, 1995, pp. 147-161.

[11] Plasil, F., Balek, D., Janecek, R.: SOFA/DCUP Architecture for Component Trading and Dynamic Updating, In
Proceedings of the ICCDS '98, Annapolis, IEEE CS, 1998, pp. 43-52.

[12] Plasil, F., Mikusik, D.: Inheriting Synchronization Protocols via Sound Enrichment Rules, In Proceedings of the
Joint Modular Programming Languages Conference, Springer LNCS 1204, March 1997.

[13] Plasil, F., Visnovsky, S., Besta, M.: Behavior Protocols and Components, Tech. report No. 99/2, Dept. of SW
Engineering, Charles University, Prague, February 1999.

[14] Selic, B.: Protocols and Ports: Reusable Inter-Object Behavior Patterns, ObjecTime Limited, Kanata.

[15] Steyaert, P., Lucas, C., Mens, K., D’Hondt, T.: Reuse Contracts: Managing the Evolution of Reusable Assets, In
Proceedings of the OOPSLA 96, ACM SIGPLAN Notices, Vol. 31, No. 10, October 1996, pp. 268-285.

[16] Szyperski, C.: Component Software, Beyond Object-Oriented Programming, Addison-Wesley, 1997.

[17] Yellin, D. M., Strom, R. E.: Interfaces, Protocols, and the Semi-Automatic Construction of Software Adaptors,
In Proceedings of the OOPSLA 94, ACM Press, 1994, pp. 176-190.

